Professional Portfolio

Home > Math / CI 4030 > Math lessons

Math lessons

Notebook 1 (Lg.)

These lessons were created for CI 4030, Teaching Mathematics in the Elementary School, under the advisement of Kathleen Lynch-Davis at Appalachian State University.  They were taught in a sixth grade classroom at Mountain View Elementary in Ashe County, NC.

NC- North Carolina DPI Elementary Education Specialty Area Standards
Standard: Standard 2: Elementary teachers have a broad knowledge and understanding of the major concepts in mathematics.
Indicator: Indicator 1: Teachers have knowledge of number sense, numeration, and numerical operation. Teachers:
Detail: Illustrate, explain, and demonstrate prenumeration, numeration, fractions, decimals, rational numbers, integers, ratio, proportion, and percentages, and
Detail: Apply four basic operations (addition, subtraction, multiplication, and division) with symbols and variables to solve problems and to model, explain, and develop computational algorithms.
Indicator: Indicator 4: Teachers have knowledge of data, probability, and statistics. Teachers demonstrate an understanding of:
Detail: The importance of formulating the proper question in order to obtain measurement and reliable answers through analysis,
Detail: How to systematically collect, organize, analyze, and summarize data in order to predict outcomes,
Detail: Various methods for reporting and representing data (graphs, charts, tables, and grids),
Detail: The likelihood of an event occurring by completing simple probability experiments, and
Standard: Standard 7 : Elementary teachers use developmentally appropriate strategies to design and deliver instruction in all areas of the elementary curriculum.
Indicator: Indicator 4: Teachers implement a variety of teaching and communication strategies for instruction.
Indicator: Indicator 6: Teachers modify instruction and assessments to meet the needs of individual students.
Standard: Standard 9: Elementary teachers understand and use the processes of problem solving, reasoning and proof, communication, connection, and representation as the foundation for the teaching and learning of mathematics.
Indicator: Indicator 1: Elementary teachers develop instruction in problem solving that enable all students to:
Detail: Build new mathematical knowledge through problem solving;
Detail: Solve problems that arise in mathematics and in other contexts;
Detail: Apply and adapt a variety of appropriate strategies to solve problems;
Detail: Monitor and reflect on the process of mathematical problem solving.
Indicator: Indicator 3: Teachers develop instruction in communication that enable all students to:
Detail: Organize and consolidate their mathematical thinking through communication;
Detail: Communicate their mathematical thinking coherently and clearly to peers, teachers, and others;
Detail: Analyze and evaluate the mathematical thinking and strategies of others;
Detail: Use the language of mathematics to express mathematical ideas precisely.
Indicator: Indicator 4: Teachers develop instruction in making connections that enables all students to:
Detail: Recognize and use connections among mathematical ideas;
Detail: Understand how mathematical ideas interconnect and build on one another to produce a coherent whole;
Detail: Recognize and apply mathematics in contexts outside of mathematics
Standard: Standard 15: Elementary teachers encourage underrepresented groups to engage in the schooling process, especially math and science.
Indicator: Indicator 1: Teachers use a variety of strategies to encourage underrepresented groups to engage in the schooling process, especially math and science. They:
Detail: Give personal attention and encouragement to underrepresented groups of students
Detail: Use relevant and real-world applications that interest a diverse population
Detail: Encourage underrepresented groups to assume leadership roles.

Context

I created and taught three math lessons on probability to a sixth grade classroom at Mountain View Elementary in Ashe County, <ST1:STATE><SPAN>NC</SPAN></ST1:STATE>.  This was completed during Block II, Spring 2006.  This assignment was completed under the advisement of Kathleen Lynch-Davis, a professor at Appalachian State University.

When creating these lessons, I used the students’ math textbook to get an idea of what they were supposed to learn about probability.  I also used the teacher edition to see what they should learn.  After doing some research, I planned lessons that would not only get the students involved and interacting with each other, the lessons would also help them to see math in an authentic way, hopefully enabling them to grasp the concepts I was teaching them.

Impact

While teaching these lessons, the goal was to allow the students to look at math in a new perspective.  I wanted them to learn that math is not boring and should not be something they hate to do.  I wanted them to have a good experience so that they will enjoy math, specifically probabilities.  During my lessons, the students learned how to simply fractions, find the probabilities of real-world application problems, change fractions to decimals and percentages, use experimental probability, solve proportions and make predictions from data.  I believe that my students, for the most part, did learn all of these things.  While observing the three students during my lessons, I noticed that my high and middle students did excel during the lessons and I believe did get a grasp on what was being taught.  My low student struggled a lot through the lessons, and although he may not be sure of what he is doing yet, (he will with more practice), I think he did learn a lot from my lessons.  The students’ work has been scanned and attached below and it shows their progression throughout the lessons.

Alignment

I have met DPI Standard 2, Indicator 1 and its details, because I had to explain and demonstrate fractions, decimals, percentages and proportions for the lessons.  The students had to first understand these concepts before they could move on in the lesson.  They also had to add, subtract, multiply and divide problems using the symbol “x” to get the answer of problems in section 11.3, making predictions from data.

I have met Standard 2, indicator 4 and its details, because I taught my students how to collect, organize and analyze data in order to make predictions of outcomes, how to organize their data into various methods of representing data, specifically charts, and how to determine the likelihood of an event by completing probability experiments.  I taught these applications during my lessons and the students completed worksheets pertaining to them.

I have met Standard 7, indicator 4, because I used a variety of teaching strategies so I could reach all of my students.  I used visual aids, for my visual learners, I worked problems out on the board and I read problems to them to work out.

I have met Standard 7, indicator 6, because I modified my teaching to meet the needs of individual students.  For the advanced students, I had activities planned for when they were finished before the other students.  I also planned activities to help the lower students who were having trouble with the assignments.  Another modification I made was that I had the interpreter signing for the deaf student in the class, and when I paired the students up, I had the deaf student with another student who was able to sign to her.  This encouraged her interaction with her peers in the classroom.

I have met Standard 9, indicator 1 and its details, because my lessons incorporated problems which allowed students to learn new things from problem solving, and to apply the new strategies they learned in class to solve the problems they are assigned.

I have met Standard 9, indicator 3 and its details, because I taught lessons which encouraged students to gather and organize their thoughts and communicate them with the teacher and their peers.  I also assigned them problems which had them to write out the definitions to mathematical terms, thus encouraging them to express their mathematical ideas accurately.

I have met Standard 9, indicator 4 and its details, because I taught lessons which allowed the concepts I taught to build upon each other during each lesson.  The students were able to see the connection of these concepts and therefore they were able to apply them appropriately.  My lessons also allowed students to connect math with the outside world.  We used authentic, real world problems which could have been found in their own, individual lives.

I have met Standard 15, indicator 1 and its details, because I used a variety of strategies to encourage underrepresented groups in the classroom.  I used authentic, real world problems so the students may find a way to connect with them and therefore understand the process better.  I gave personal attention to the underrepresented students in my class by spending extra time with them to help them understand the applications being taught.  Also, I encouraged them to have leadership roles among their peers when I allowed them to pass out papers, pass out the Skittle bags, and to be the captain in their groups when I paired them up to do problems. 

Author: Shannon Williamson
Last modified: 6/4/2007 7:37 PM (EST)